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Abstract

Batch Normalization ( BatchNorm ) is the standard normalization technique used
in today’s state-of-the-art residual network variants. Although BatchNorm works
fairly well to stabilize training, it is most effective when the batch size is large.
This limits the use of BatchNorm to high V-Ram GPUs. In this work, we explore
an alternative to BatchNorm called Group Normalization ( GroupNorm ) coupled
with Weight Standardization ( WeightStand ). We show that using GroupNorm
with WeightStand on Wide ResNets with Pre-activation Residual blocks improves
it’s performance significantly.

1 Introduction

Residual Networks ( Resnets ) had a large success in image classification. The early Resnets
introduced in [1] showed that optimizing networks as deep as 1000 layers is possible with residual
connections. This formed a standing ground for other variants of Resnets . At this point, BatchNorm
and subsequent activation were always applied after convolution operations in Resnets . The order
of activations in residual blocks were first explored in [2], showing that pre-activation provides
an improvement in accuracy over prevalent post-activation residual blocks. Later, [3] argues that
widening the residual blocks provides a more effective way of improving the performance of residual
networks rather than increasing the depth. It is also noted by [4,5] that BatchNorm error increases
rapidly when the batch size becomes smaller due to inaccurate batch statistics estimation. Motivated
by these observations, this work is based on [3,4,5] and tries to achieve good performance on the
CIFAR-10 dataset.

2 Related Work

Wide residual networks There are three ways to increase representational power of a residual
block: (1) Adding more convolutional layers per block (2) Widening the convolutional layers by
adding more feature maps (3) Increasing the kernel sizes in convolutional layers. [3] finds that
using a basic residual block with 3 X 3 kernel size gives the best performance. They also note that
the computational complexity increases linearly with the network depth and quadratically with the
widening factor. They find that the optimal performance is achieved by using 4 convolutions per
block with a widening factor of 10. For this reason, we are going to use this network architecture as
our backbone.

Group Normalization Normalization at the hidden activation layers helps the network to train
faster by preventing the exploding gradients and helps the gradient descent algorithm to converge
quicker. Batch Normalization does it along the batch dimension. An important thing to note is that at
inference time BatchNorm uses the pre-computed mean and variance from the training set [6]. This
means that there is no normalization performed during test time. Also, the pre-computed statistics



may not represent the test data if the distribution greatly differs. In addition, the batch size has a huge
impact on the accuracy of the estimated statistics.

Although there are several other normalization methods like Layer Normalization, and Instance
Normalization, they have not matched BatchNorm accuracy. Instead of using batch statistics
information, [4] claims to rather avoid such computations. GroupNorm is a middle ground between
Instance Normalization and Layer Normalization. As shown in Figure 1, it organizes the channels
into different groups and computes mean and variance along the spatial dimensions and a group of
channels.

Figure 1: Left: Comparing normalization methods on activations (blue) Right: Weight Standardization
in convolutional layer (orange)

Weight Standardization The reason why normalization helps in optimizing neural networks is due
to smoothing of loss landscape and thus accelerating the convergence during training [7]. Although
BatchNorm satisfies this property of normalization, it has other drawbacks aforementioned such
as batch size. While GroupNorm could overcome this problem, in practice it alone could not
outperform BatchNorm at large batch sizes. Thus a new technique for normalizing weights called
Weight Standardization was introduced in [5]. Unlike BatchNorm , WeightStand is applied on
convolutional weights. It essentially normalizes the gradients during back-propagation. [8] claims
that GroupNorm combined with WeightStand outperforms BatchNorm at almost any batch size.
[5] also shows that WeightStand inherently smoothens the loss landscape and thus helps in faster
convergence as well.

3 Implementation

3.1 Standardized Convolutions

Weight Standardized convolutions can be implemented in PyTorch 1.13.0 as shown below:

1 class StdConv2d(nn.Conv2d):
2 def forward(self, x):
3 w = self.weight
4 v, m = torch.var_mean(w, dim=[1, 2, 3], keepdim=True, unbiased=False)
5 w = (w - m) / torch.sqrt(v + 1e-10)
6 return Conv2d(x, w, self.bias, self.stride, self.padding)

We use pre-activation residual networks with basic residual block as our backbone architecture. Every
convolution in residual block i.e., both 3X3 convolutions and 1X1 shortcut projections are replaced
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with their weight standardized versions. We perform down-sampling by using convolutions with a
stride of 2.

3.2 Group Norm Layer

The BatchNorm layer in every residual block is replaced with GroupNorm layer with 32 groups in a
single line of code using PyTorch 1.13.0 as follows:

1 self.gn = nn.GroupNorm(num_groups,in_filters)

3.2.1 Wide Residual Network

We use the best architecture that [3] claims to work on CIFAR-10 dataset i.e, a 28 layer deep residual
network with a widening factor of 10. The following table shows the network architecture in brief:

Table 1: Network architecture

Size Layer

32X32 [3X3, 16]

32X32
[
3X3, 160
3X3, 160

]
X4

16X16
[
3X3, 320
3X3, 320

]
X4

8X8
[
3X3, 640
3X3, 640

]
X4

The network ends with an average pooling and 640-way fully connected layer.

3.3 Data augmentation

We perform the same augmentation that [1] uses: during training, 4 pixels are padded on each side
and a random 32X32 crop is sampled from an image or its horizontal flip with the per-pixel mean
subtracted. For testing, we only evaluate the single view of the original 32X32 image.

3.4 Hyper-parameter details

Our model uses a vanilla ResNet architecture with pre-activation residual blocks widened by a factor
of 10, except that we replace all Batch Normalization layers with Group normalization and use weight
standardized convolutional layers. We train our models using SGD with momentum of 0.9 and we
use a dropout rate of 0.3. The learning rate starts from 0.1 and is divided by 5 at 60, 90, 120 and 200
epochs. We use a 45k/5k train/validation split. The model is trained with a batch size of 128 on an
RTX 3070 GPU with 8GB Vram for a total of 250 epochs and it took 9 hrs to train.

4 Experiments

We experiment on the CIFAR-10 dataset with various ResNet models: ResNet-164 with bottleneck
blocks and Batch normalization, Resnet-164 with bottleneck blocks, batch normalization and pre-
activation, Wide ResNet with Batch normalization, and Wide ResNet with Group Normalization
and Weight Standardization. Figure 2 shows the training loss plotted against the epochs and Table 4
shows the results in terms of test accuracy on the public test set.
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Table 2: Results using various models

Model top-1 test accuracy (%)

ResNet-164 Bottleneck 91.05
PreAct Reset-164 Bottleneck 92.24

PreAct WRN-28-10 BatchNorm 91.13
PreAct WRN-28-10 GroupNorm + WeightStand 94.75

Figure 2: Training loss vs epochs

5 Conclusion

We present experiments performed with different variants of residual networks on the CIFAR-10
dataset. Based on the results, we propose that Wide residual networks with Group Normalization and
Weight Standardization achieves a decent accuracy of 94.75%. There is still room for improvement
because the current benchmark on the CIFAR-10 dataset is 99% top-1 accuracy. Also, this work
touches just one aspect of exploring deep neural networks i.e, architecture. We think that perhaps
other techniques such as data augmentation, training methods could help reach the benchmark score.
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